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I. INTRODUCTION 

The phenomena of circular birefringence and di­
chroism are well understood. In the last decade rapid 
progress in this field is exemplified by the experimental 
study of steroids by Djerassi.1 Since then several 
theoretical studies2-6 have contributed to the under­
standing of the molecular origin. The purpose of 
this review is to treat the theory of optical rotation 
from a unified point of view to examine the ideas 
which have been advanced, and to consider the struc­
tural information derivable from these studies. A list 
of the books and the review articles on this field is 
given.1^7-14 

II. OPTICAL ROTATOEY DISPERSION (ORD) AND 

CIRCULAR DICHROISM (CD) 

There are some substances for which the plane of 
polarization of transmitted linearly polarized light 

(1) C. Djerassi, "Optical Rotatory Dispersion," McGraw-Hill 
Book Co., Inc., New York, N. Y., 1960. 

(2) W. Moffitt, J. Chem. Phys., 25, 467 (1956). 
(3) W. Moffitt, D. D. Fitts, and J. G. Kirkwood, Proc. Natl. Acad. 

Sci. U. S., 43, 723 (1957). 
(4) W. Moffitt, / . Chem. Phys., 25, 1189 (1956). 
(5) W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, and 

C. Djerassi, J. Am. Chem. Soc, 83, 4013 (1961). 
(6) W. Moffitt and A. Moscowitz, J. Chem. Phys., 30, 648 (1959). 
(7) T. M. Lowry, "Optical Rotatory Powder," Longmans, Green 

and Co., Ltd., London, 1935. 
(8) P. Crabbe, "Optical Rotatory Dispersion and Circular Di­

chroism in Organic Chemistry," Holden-Day, Inc., San Francisco, 
CaUf., 1965. 

(9) L. Velluz, M. Legrand, and M. Grosjean, "Optical Circular 
Dichroism," Academic Press Inc., New York, N. Y., 1965. 

(10) B. H. Levedahl and T. W. James, Tetrahedron, 13, No. 1-3 
(1961). 

(11) "A Discussion on Circular Dichroism: Electronic and Struc­
ture Principles," Vol. A297, No. 1448, Proceedings of the Royal 
Society, London, 1967, pp 2-172. 

will be rotated. These substances are said to be 
optically active. The phenomenon was discovered 
by Ar ago15 for quartz (solid) in 1811 and by Biot16 for 
liquid in 1815, and is commonly called optical rotation. 
In optical rotation measurements the term plane of 
polarization is meant to mean the plane determined 
by the electric vector and the direction of propagation 
(see Figure 1). The plane perpendicular to the direc­
tion of propagation, over which the vectors E and H 
are constant, is sometimes also described as a plane of 
polarization. In our discussion the first definition 
will be used. The convention is that a clockwise 
rotation for an observer facing the oncoming wave 
is called dextrorotatory; a counterclockwise rotation is 
levorotatory (Figure 2). 

Fresnel17 was the first to ascribe rotation of plane-
polarized light to the different velocities of transmission 
of the two circularly polarized beams whose ampli­
tudes add to form plane-polarized light. The phase 
difference set up in the medium by the light is equiva­
lent to a rotation of the plane of polarization. The E 
vector of the light is 

E = ReEo?* (D 
Here \p = 2irc[< — (n/c)z] is the phase angle. Since 
the rotation, a, is half the change in phase angle per 
centimeter of right and left circularly polarized light, 
we write 

(12) W. Kauzman, J. Walter, and H. Eyring, Chem. Rev., 26-27, 
339 (1940). 

(13) Advan. Chem. Phys., 4, 67, 113 (1962). 
(14) S. F. Mason, Quart. Rev. (London), 17, 20 (1963). 
(15) T. Arago, Mtm.Inst., 12, 93, 115 (1811). 
(16) J. B. Biot, Mim. Acad. Sci., 2, 41 (1817). 
(17) A. Fresnel, Ann. Chim. Phys., 28, 147 (1825). 
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Figure 1.—The field vectors in an electromagnetic wave. 
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Figure 2.—The measurement of the angle of rotation. 

T , 
a = -(m — U1) 

X 
(2) 

where a is in radians per unit length and X is the wave­
length of the incident light. 

Molecular rotation is denned as the rotation in de­
grees per decimeter divided by the concentration, c, 
in grams per cubic centimeter multiplied by Viooth 
of the molecular weight, MW. 

[*] 
18MW 

Xc 
(ni — U1) (3) 

This equation implies that the rotation depends 
linearly on both path length and concentration, which 
will be true in the limit of low concentrations. At high 
concentrations molecular interactions cause deviations 
from linearity. 

The rotation, like the refractive index, also depends 
on the frequency of the incident light. The wave­
length dependence of molecular rotation is called opti­
cal rotatory dispersion (ORD). An ORD curve 
across an electronic absorption band is S-shaped while 
the curve for circular dichroism is Gaussian. This 
behavior is called the Cotton effect. A Cotton effect 
with its peak on the long-wavelength side is conven­
tionally assigned as positive. In the region of ab­
sorption the two components of light are also absorbed 
differently by the optically active medium so that the 
emergent light is elliptically polarized. This phe­
nomenon is called circular dichroism (CD) (Figure 3). 

The imaginary part of the refractive index, n, is 
related to the absorption. 

Figure 3.—Elliptically polarized light. 

The attenuation of the electric vector is thus exp-
(—2-icvkz/c). The intensity, which is proportional to 
the absolute square of the electric vector, is attenuated 
by exp(—4iri»/cz/c). The ellipticity, $, is denned by 
the equation 

JP rp 
tan # = * ' = tanh - (fci - kt)d (4) 

EJ1 + JLi X 

For small absorption tan ^ is proportional to ^ thus 

T , A 
(5) 

The definition of molecular ellipticity, [0], parallels 
that of rotation. Thus we have 

, , M W l TT , v180 ,„ , , , 
*1 = 17S7 " 7 ( fc l ~ fcr)— x 1 0 d e S / d m <6> 

IU(J C X 7T 

Ordinary absorption follows Beer's exponential law18 

J = I o X 1 0 " x (7) 
where A is the absorbance and is related to the extinc­
tion coefficient, e, by the equation 

A 

d (cm) X c' (moles/1.) 
(8) 

where d is distance in centimeters and c' is concentra­
tion in moles per liter. 

The relation between k and e is 

I = I0X 1 O - 4 = 7o X 1O-"10' = he-iM/* 

k = -^-(In 10) tdc' = 2.303^-e 
47TCt 47T 

Therefore molecular ellipticity becomes 
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This is a linear relation between the molecular ellipticity 
[9] and the difference in the extinction coefficients. 

Ae = ei — er (10) 

The differential extinction coefficient varies by several 
orders of magnitude and is widely used. 

A plot of circular dichroism against wavelength gives 
the wavelength dependence of the differential extinction 
coefficient and has a Gaussian shape. The circular 
dichroism, [6], can have either sign, while the ordinary 
absorption coefficient is invariably positive. 

ORD and CD curves are related. Both contain the 
same kind of information and are due to the same elec­
tronic transition. Their relation is formally ex­
pressed by the reciprocal Kramers-Kronig19 relation. 

* w = ; /> '> x T ^ ' <"> 

•W--fx/>V^x5dx' (12) 

In principle the complete knowledge of one determines 
the other. 

The combined use of ORD and CD with ordinary 
ultraviolet absorption spectra is very powerful in 
spectroscopic and structural studies of molecules. 
ORD is simpler in experiment and in principle involves 
crossed polarizers. The difficulties in making CD 
measurement have only been overcome recently.20 

CD is much more powerful in resolving overlapping 
absorption bands (see Figure 4). This arises from the 
fact that the CD curve is confined to a small region in 
which the optically active medium absorbs, while the 
tail of ORD curve extends outside the region of ab­
sorption. Many optically active media show neigh­
boring CD bands having opposite signs. 

For media with absorption bands only in the region 
below the far-uv, ORD measurement is very useful 
because their tails in the far-uv can be measured and 
studied.21 The earlier D-line ORD data usually give 
small rotations and are well outside the regions of 
absorption. 

The electronic origin of ORD, CD, and absorption 
spectra is well understood. The vibration and rota­
tional aspects are usually negligible in those studies. 
I t is often possible to consider rotation or dichroism 
due to a single electron or a single chemical group. 
The idea of partial rotation and dichroism greatly 
simplifies the theoretical considerations. 

III. QUANTUM THEORY OF OPTICAL ROTATION 

Rosenfeld22 first gave a quantum mechanical theory 
of optical rotation for spectral regions well removed 

(19) Reference 1, Chapter 12, p 157. 
(20) Reference 9, Chapter IV. 

2-
" [e] x io"4 

' , \ , . 
ao ~2kr-^230 

Polyxanthylic Acid 
PH = 11.2 
concentration .84mg/20ml 
temperature 270C 
path length 2 cm 

2*6 250 260. 270 / 280 290 300 

Figure 4.—The circular dichroism curve of polyxanthylic acid 
at pH 11.2, showing five discernible circular dichroism bands 

in the spectral region from 210 to 310 m^. 

from the absorption maxima using a semiclassical treat­
ment of the radiation field23 and obtained the rotation 
in terms of the fundamental molecular quantity, the 
rotatory strength. The wavelength dependence is 
reminiscent of the many terms in Drude's equation, 
which has been used to correlate experimental data. 
Rosenfeld's equation is 

96TrATnx
2 + 2 „ X1

2A1 
[0]x = 

he 'X2 (13) 

where [^]x is the molecular rotation for incident light 
of wavelength X, N is Avogadro's number, h is Planck's 
constant, c is the velocity of light, nx is the index of 
refraction of the dispersive medium for incident light 
of wavelength X, (nx

2 + 2)/3 is the Lorentz correction 
of the local field, and X1 is the wavelength of the ab­
sorption maximum of the t'th electronic transition. 
The quantity i?4 is the rotatory strength for the ith. 
electronic excitation. The rotatory strength is de­
fined as the imaginary part of the scalar product of 
the molecular electric dipole moment with the magnetic 
dipole moment for the electronic transition under con­
sideration. For a transition from the lower state 
*o to the upper state SÊ , one has 

Rt = Im(\po\p\\pt)-(^t\m\\l/0) (14) 

It turns out that circular dichroism is also governed 
by the rotatory strength.24 The rotatory strength Rt 

characterizes the ith electronic transition and fixes 
the sign and magnitude of the Cotton effect. The 
Rosenfeld equation has been derived for undamped 
motion and accordingly has a singularity at resonance, 
which can only be removed by the inclusion of damping 
terms. When the incident light is of the same wave­
length as that of the absorption maximum, i.e., X « X1, 

(21) K. Mislow, E. Bunnenberg, R. Records, K. Wellman, and C. 
Djerassi, J. Am. Chem. Soc, 85, 1342 (1963). 

(22) L. Rosenfeld, Z. Physik, 52, 161 (1928). 
(23) E. V. Condon, Rev. Mod. Phys., 9, 432 (1937). 
(24) E. V. Condon, W. Altar, and H. Eyring, J. Chem. Phys., S, 

753 (1937). 
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Rosenfeld's equation 

Figure 5.—Comparison of Rosenfeld's equation with actual 
behavior in the absorption region. 

the molecular rotation according to the Rosenfeld 
equation goes to infinity, as shown in Figure 5. 

The rotatory strength also reflects the stereochemical 
requirement for an optically active substance. It is a 
pseudo-scalar which changes sign on reflection and in­
version in the origin. Many structural features of 
optically active molecules are reflected in the proper­
ties of the rotatory strength. Symmetry considera­
tion alone yields much useful information. 

The stereochemical rule specifies the kind of struc­
tural asymmetry required of an optically active 
molecule (Pasteur, 1866). Only molecules not super-
imposable on their mirror images are optically active. 
The two components of the nonsuperimposable mirror-
image pair are called enantiomorphs. Molecules 
with either a plane of symmetry or a center of inversion 
are superimposable on their mirror images and are 
therefore optically inactive. 

However, the nonsuperimposability of the mirror-
image pair is a more general criterion. A plane of 
symmetry and a center of inversion are equivalent 
respectively to a onefold and a twofold rotation-reflec­
tion axis of symmetry. There are molecules which 
have a fourfold rotation-reflection axis of symmetry 
and which are superimposable on their mirror images 
and are therefore optically inactive.25 The stereo­
chemical rule implies that the mirror-image pair of a 
molecule shows opposite rotation. The racemate of a 
compound contains equal amounts of both enantio­
morphs and is therefore optically inactive. Most 
biologically important molecules exist only in one con­
figuration and are optically active. It is expected that 
ORD and CD are important in the structural studies 
of biological molecules. It is known now that the 
over-all symmetry property of a molecule determines 
its optical activity. The group-theoretical method is 
therefore widely used. 

(25) G. E. MoCaaland and S. Proskow, J. Am. Chem. Soc, 78, 
5646 (1956). 

Paralleling Mulliken's oscillator strength26 of ab­
sorption spectra, Moffitt and Moscowitz6 gave the 
following equation for the relation between the rotatory 
strength, R{, and the experimental CD curve, 0<(X) 

Ri ~ IrrWji 
(X) dX 

(15) 

where 0*(X) = V4(^i — fa)- In terms of the molecular 
ellipticity, [0<(X)] is thus 

Ri = 0.696 X 10 -L [0,(X)] dX 
(16) 

Using the relation [0(X)] = 3300Ae(X), the rotatory 
strength is 

Rt = 0.23 X 10" 
* / 

Ae4(X) dX 
(17) 

This equation can be justified in the following way. 
From the Kramers-Kronig relation, the rotation and 
the ellipticity are related by27 

TV 2V> [' 0 ( / ) d / 
4>{v) = — (ni - n r) = — I - r — ; 

C T JO V (j> i — V 

T JO 

( » ' 2 - K2) 

0(/)/V d / 

(*o2 - ?2) 1 + 
vo' - v> I 

d(v') is different from zero for / close to the absorp­
tion maximum v0. When the frequency of the incident 
light is well removed from the natural frequency 0̂ of 
the optically active molecule, | / 2 — P0

2I < < ko2 — ̂ 2I; 
therefore 

* W S 
2^2 6(v) dv 

n W 
_ C6JA 
v*) J v 

Comparing this with the Rosenfeld equation and assum­
ing that the rotations due to different transitions do 
not overlap, one finds 

B1 = 
ZHc CSi(X) dX 

4JTW-l J t 

The sign of the rotatory strength is useful in deducing 
structural information, but the order of magnitude 
also lends insight into the electronic origin of an 
optically active band.28 The natural unit of rotatory 
strength is 

eao 
eh 

2m x 
2.35 X 10-38 

where a0 is the radius of the first Bohr orbit of the 
hydrogen atom. eh/2mec is the Bohr magneton. 

(26) R. S. Mulliken, J. Chem. Phya., 7, 14 (1939). 
(27) C. A. Emeis, L. J. Oosterhoff, and G. de Vries, Proc. Roy. Soc. 

(London), A297, 54 (1967). 
(28) A. Moscowitz, ibid., A297, 16 (1967). 
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IV. OPTICAL ROTATION AS MIXING OF PURE STATES 

A transition is optically active when it has a non-
vanishing rotatory strength. For the transition from 
the ground-state \a) to the excited state \b), the rota­
tory strength is the imaginary part of the scalar product 
of the molecular electric dipole moment and the mag­
netic dipole moment for the transition. These moments 
are (a\p\b) and (b\m\a) so that 

Ra-+b = Im(a\p\b)-{b\m\a) (18) 

Equation 18 is an alternate way of writing eq 14. 
Both notations are common in the literature and should 
not cause confusion. 

For molecules having a plane or center of symmetry 
there is no pair of states, \a) and |&), for which both 
(a|p|6) and (a\m\b) are different from zero. The elec­
tric dipole moment (a|p|6) is different from zero for 
pairs of states which are both even or both odd while 
the magnetic dipole (a|m|?>) is different from zero for 
pairs of states with one even and the other odd. Ac­
cording to the selection rule for a system with spherical 
symmetry, a transition is purely electrically allowed if 
An = any number, Al = ± 1 , and Am = 0, ± 1 , in 
which case (a\p\b) ^ 0 and (a\m\b) = 0. It is purely 
magnetically allowed if An = 0, Al = 0, and Am = 0, 
± 1 when (a\p\b) = 0 and (a\m\b) ^ 0. 

In the following the lower state \a) will be taken as 
the ground-state |0) which is assumed to belong to the 
identity representation. Only transitions from the 
ground state will be considered. With the above 
assumption only the symmetry properties of the upper 
state \b) will be of interest. If the transition |0) -*• 
\b) is either purely electrically allowed or purely mag­
netically allowed, the state |6) is called a pure state. 
Transitions to pure upper states are optically inactive. 
Optical rotation always involves transition to mixtures 
of hydrogen-like atomic states, one electrically, the 
other magnetically allowed. When two states pre­
dominate in a mixed state with one being electrically 
and one magnetically accessible from the ground state, 
they give rise to two mixed states. 

The pair of transitions from the ground state occurs 
at different regions of the spectrum. A large absorp­
tion band is usually associated with the electrically 
allowed transition while only a shoulder appears for a 
magnetically allowed transition. These two transi­
tions should show rotation of opposite signs. This is 
responsible for the high resolving power of the CD 
spectra. This property is illustrated for the one-
electron case using the harmonic oscillator model. 

Transitions from the ground state (000) to the two 
possible mixtures of (100) and (011) are next considered. 
These two upper states are mixed by the perturbation 
V = Axyz to give the following mixtures 

(100) = (100) + C(OIl) (19) 

(011) = (011) - C(IOO) (20) 

The mixing coefficient is 

c - MM (21) 
I i 100 — -G<011 

The coefficient C contains an energy factor l/(2?ioo — 
Em) which can be large when the two levels are close. 
The rotation (100) means that the motion in the x, y, 
and z directions is characterized by the quantum 
states 1, 0, and 0, respectively. The energy diagram 
is shown in Figure 6. 

The rotatory strengths are 

RE ¥= C(000|p| 100) • (011|m|000) (22) 

RM sc -C(000|p|100)-(011|m|000) (23) 

The above property is not restricted to the one-electron 
model, nor is it restricted to the harmonic oscillator 
approximation. It is a general result as pointed out in 
the following. Both in the one-electron model and the 
coupled oscillator model at least two functional groups 
of an optically active molecule are involved. In the 
one-electron case the electrically allowed transition is 
localized in one of the functional groups and the 
magnetically allowed transition in the other, while in 
the coupled oscillator model both transitions are elec­
trically allowed. 

V. T H E ONE-ELECTRON MODEL 

It is important to note that for every active transi­
tion a pair of transitions, one electrically allowed and 
the other magnetically allowed, is involved. The one-
electron model usually involves as the low-energy state 
a strong magnetically allowed transition with a small 
amount of an electrically allowed transition mixed in. 
The electron involved is often a lone-pair electron. 
Actually a molecule with only one important chromo-
phore should be adequately treated by the one-electron 
theory. There are two different approaches using the 
one-electron method. 

(I)29 The nonbonding electron on the oxygen of 
a carbonyl chromophore is excited to an antibonding 
state on the carbon and oxygen. This transition is 
strongly magnetically allowed and is weakly electri­
cally allowed. The usual explanation is that an elec­
trical transition localized in a vicinal group lying in the 
far-uv is mixed in. In this approach the molecule is 
treated in such a way that it consists of mainly two 
groups: the chromophore group in which the magnetic 
transition is localized and the vicinal group in which 
the electric transition is localized. The static per­
turbation mixes the two transitions. The molecular 

(29) D. J. Caldwell and H. Eyring, Rev. Mod. Phys., 35, 577 
(1963). 
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(Oil) 

(100) 

«?//> 

<jooy 

IUOOJ • <poo) 
Figure 6.—Energy-level diagram. 

wave functions are simply the product of the chromo-
phoric and the vicinal wave functions. 

WW = WW + E F n ,* ««,! 
r(Enr* + E,) 

W**V (24) 

Vn *wW = W.*W + E p ' ""*'' WW (25) 

W V = WV - E —nrH-
~i Enw* — E1 

W.*W (26) 

The rotatory strengths are 

«o,nx* = t „ 8 _ p—iPormnT*,0 (27) 

. 2EiV„T*,i - -
^ M = " 1 F i - F—2?°' - wW*,o (28) 

Therefore 
•Bo.nx* + #1 — 0 (29) 

(2)30 The second approach is based on the classi­
fication of the molecular states according to the sym­
metry of the chromophore. There are two types of 
states which are important: those which transform 
either like polar vectors or axial vectors (the former is 
electrically allowed and the latter is magnetically 
allowed). Consider the following molecular states: 
P transforms like a polar vector, E allowed (i.e., it 
forms a normal subgroup); a transforms like an axial 
vector, M allowed (i.e., it forms a normal subgroup); 
p and o- are the rest of the states. 

1 0 - I W - E ^ W - E ^ T I P ) (30) 

1«) - 1«) + E 

o Ea — E^ /Ef — E0 

E a — Ep 
| / 3 ) - E ^ 4 - | P ) (31) 

P'EP — Ea 

IO - io, - E « L W <,Er — Eo 
(32) 

Ro, = +t(0|p|«.[E^%(«|m|0) + 

E ^ > H P ) 1 (33) 

(30) J. A. ScheUman, / . Chem. Phys., 44, 55 (1966). 

Roa = —i E#»t (0|») 
E„ — Ea 

E^0j3 + E^Oa = i 
0 a 

v (PI^IQ) ( n , 
*->w r̂ (ww 

p &p — Mi0 

(a\V\P) 

(a\m\0) (34) 

«,pEa — Ep_ 

^ (PI^I°) 
p E „ — E0 

. o,/s Ea — E0 

(0|p||8)-(a|m|0) + 

E(OIPIIS)-03|m|p) -

E(0|p|a)-(a|m|0) = 0 (35) 

Both approaches imply that a nonvanishing rotatory 
strength is always involved in a pair of transitions, one 
strongly electrically allowed and one strongly magneti­
cally allowed. 

VI. KIRKWOOD'S COUPLED OSCILLATOR MODEL 

The main feature of this model is to consider a 
molecule as made of N groups. It is assumed that 
there is no electron exchange between any pair of 
groups. The molecular wave functions are simply the 
product of the group wave functions. Whenever there 
is more than one group with the same electronic struc­
ture, a linear combination of the appropriate group 
wave functions should be used. Only two extreme cases 
have so far been considered:2'3,31 (1) nondegenerate 
case, molecules with no two groups having the same 
electronic structure; (2) degenerate case, all the groups 
are alike. The intermediate cases have not so far 
been treated but could be; however, the separate con­
sideration of the nondegenerate and degenerate cases, 
which will be presented here, enables one to analyze 
and understand the general problem without going 
through the details. 

It should be emphasized that the molecular wave 
functions completely determine the rotatory and ab­
sorption properties. The oscillator strength as well 
as the rotatory strength can then be calculated. 

It is appropriate to consider the mechanism of rota­
tion for a model and the important question of how to 
divide a molecule into groups. In this model two 
electronic oscillators, dissymmetrically oriented as 
in Figure 7, will lead to rotation of the plane of polariza­
tion. It is important that d and the coupling constant 
kn both be different from zero. In the actual molecule 
any transition localized in a functional group can be 
taken as an oscillator. This functional group is the 
chromophore. The model requires at least two chromo-
phoric groups dissymmetrically oriented in space and 

(31) J. G. Kirkwood, ibid., 5, 479 (1937). 
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coupled electronically. One feature of this model is 
that when two chromophores are coplanar no rotation 
results. This is a result of the asymmetry require­
ment. When two chromophores are widely separated 
in space and consequently are noninteracting electroni­
cally, the coupling constant is zero and there is no 
rotation. 

From the above discussion it is clear that the molecule 
is to be divided up according to the chromophoric 
groups it contains. The nondegenerate and degenerate 
cases differ in that for the former no two chromophores 
are the same while in the later no two chromophores 
are different. A polymer with only one kind of re­
peating unit necessarily belongs to the degenerate case. 
Polymers with different residues are treated as non-
degenerate. 

When a molecule contains no chromophores with 
absorption in the visible or near-ultraviolet region, the 
division of a molecule into groups is unavoidably am­
biguous. This is the case for molecules with asym­
metric carbons for which the model was originally 
proposed. 

The most important feature of the rotatory spectra 
of polymers is the so-called exciton splitting. It is 
observed experimentally that the polymers' CD spectra 
often show two rotatory bands of opposite sign centered 
at an absorption maximum32 (Figure 8). This was 
subsequently explained in terms of the exciton model 
of the molecular crystals. In essence this is nothing 
but the result of coupling of chromophores. This can 
be best understood by considering the dimer in which 
there are two similar chromophores coupled electroni­
cally. The molecular ground-state function is 

41O — <f>01<f>0: (36) 

The molecular <r-excited state is doubly degenerate. 
Its wave function is 

1 
<A<r,± — 7ys(#<H<£02 ± forfnl) (37) 

The symmetric and antisymmetric states denoted by 
+ and — are separated spectroscopically. Their rota­
tory strengths are 

Oi€ -* —» —* 
(38) 

Here e„ is the common energy of the two states without 
the perturbation (Figure 9 is the energy-level diagram), 
a ^ 1/137 is the hyperfine structure constant, Tu 
is the vector distance between chromophores, and 
~qal and ~q& are the transition dipole moments. The 
electric transition of one monomer appears to be a 
magnetic transition to the second monomer, and vice 

(32) I. Tinoco, Jr., J. Am. Chem. Soc, 86, 297 (1964). 

''(0,1,H) 

(1,0,0) 
—•x 

Figure 7.-—Coupled oscillator model. 

Figure 8.—Exciton splitting. 

+ 

Figure 9.—Energy-level diagram. 

versa. The rotatory strengths are both derived from 
the same coupled oscillator factor 7w (qal X ~q^). 

The exciton splitting gives 

R+ + R. = 0 (39) 

However, the exciton splitting is not peculiar to the 
degenerate case alone. Two different chromophores 
coupled electronically are also expected to have their 
energy levels repel each other. Thus the zeroth order 
wave functions for the common ground state and the 
two different excited states are 

X o 0 = fo<l><> 

Xr" = Mr 

(40) 

(41) 

(42) 



532 HENRY EYEING, HAN-CHUNG LIU, AND DENNIS CALDWELL 

- * ; 

K-

-x' 

-xl 
Figure 10.—Energy-level diagram. 
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Figure 11.—Hypochromism. 

The first-order wave functions are obtained by mix­
ing the zeroth-order wave functions. The ground state 
is mixed with a molecular state in which both groups 
are excited. 

Xo' = Wo — 
«<r + er 

l M r (43) 

The excited states x<? and XT° are mixed with each 
other. 

Xc' = •& M + 
V 

e* — «r 
• w , 

XT = MT — 
V 

e, ~ «T 
-^M 

(44) 

(45) 

It should be noted that the two different excited states 
are the two zeroth-order wave functions mixed with 
coefficients of opposite sign. Figure 10 is the energy 
diagram. 

The two rotatory strengths are 

Br~ +a 
e<r«r 

€ 2 _ , 2 7r u - (? r f X ~r2) (46) 

R7. = —< ;Vra-(qAXqTd (47) 

from which it follows that 

R, + RT = 0 (48) 

This conclusion is the same as in the degenerate case. 
Accordingly exciton splitting in general is the result of 
the fact that two chromophores are coupled electroni­
cally. 

The most important feature of the absorption spectra 
of polymers is the borrowing of intensities of absorption 
bands.33 This is illustrated in the Figure 11. Accord­
ing to the exciton model when the polymer goes through 
a helix-random-coil transition, one of the two coupled 
absorption bands 1 and 2 will increase and the other will 
decrease in intensity. This property has so far no ex­
perimental verification. The points to be made here 
are: (1) this property is also expected for the non-
degenerate case; (2) this property is closely related to 
the exciton splitting. The connection is in the mixing 
of states with coefficients having opposite signs. Using 
eq 43-45, it is easy to show that 

, 2m - j , 8m__e £ £ r __ 
Vu"S,i-ffri (49) 

/n = 
2m .. 

m 
:eT2QT2 

2 _ 
8m e^r 
Sh2 2 _ Tu"9rt-8 r t (50) 

This property, if it is sensitive enough to be detectable, 
can be used to establish the coupling of a wide CD 
exciton splitting. Two CD bands are coupled when 
their corresponding absorption bands show the effect 
of borrowing of intensities. 

VII. HELICAL SENSE, HELICAL CONTENT, AND 

MOFFITT'S CONSTANT 

Moffitt's constant, bo, is similar to the rotatory 
strength in many ways. The way its sign and order of 
magnitude correlate with structural features, the way 
its numerical value is obtained from the off-absorption 
rotatory data and from circular dichroism, and its 
symmetry properties parallel those of the rotatory 
strength. 

The molecular rotation in regions well removed from 
absorption is given by Rosenfeld's equation which is 
similar in form to Drude's earlier equation. Equations 
51 and 52 are the same as eq 13 except that they are 
written in terms of the frequency instead of the wave­
length. 

W = E- atv' 

i Vi' — V 

where 

96iriV n„2 + 2 

(51) 

(52) 

(33) W. Rhodes, / . Am. Chem. Soc, 83, 3609 (1961). 
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N is Avogadro's number; n„ is the index of refraction 
for light of frequency v. Rt is the rotatory strength 
and is defined in eq 14. The sign of the rotatory 
strength determines the sign of the corresponding 
Cotton effect. Its order of magnitude covers a wide 
range and provides insight into the nature of the transi­
tion.11 

The numerical value of the rotatory strength can be 
obtained from the off-absorption rotatory data. How­
ever, Moffitt and Moscowitz6'19 were able to show that 
it can also be obtained from circular dichroism. Cir­
cular dichroism arises from the difference of absorption 
coefficients for the left- and the right-handed circularly 
polarized light. 

6 = y4(fci - k.) (53) 

The rotatory strength, Rf, is related to 6 by 

She ret(\) d\ 
Rt 

_ she n 
~ 4 T T W I J ' 

(54) 

where Ni is the number of molecules per cubic cen­
timeter. 

Once the circular dichroism curve for a certain transi­
tion of an optically active compound is determined ex­
perimentally, the rotatory strength can be obtained by 
performing the integration occurring in eq 54. The 
rotatory strength is a pseudo-scalar which changes sign 
for a mirror-image system. This feature is widely 
used to correlate the stereoconformation to the sign of 
the Cotton effect. 

The rotatory properties of the helical molecules were 
first studied by Moffitt.34 In his study helical mole­
cules were shown to exhibit anomalous dispersion which 
does not follow Drude's equation. Instead the molecu­
lar rotation is given by 

[*] = E 
O4Xi 

t X2 + E &A*4 

r (x 2 - xf
2)2 (55) 

where b{ is different from zero; the second term is the 
anomalous dispersion. 

It was further shown that three constants, O0, bo, 
and Xo, are sufficient to characterize the experimental 
data. 

M = r^r-. + 
X2 - X0

2 (X2 - X0
2 )2 

(56) 

The relation between OQ, bo, Xo and ot, bit X4 are given 
by the following set of equations. 

OoXo2 = E 0 A i 2 

» 

6oXo4 = E&A*4 

i 
boXo6 = S&iXj6 

(57) 

(58) 

(59) 

The set of constants, a0, b0, and Xo, takes account of the 
fact that several transitions jointly contribute. 

From eq 57-59, we see that transitions in the long 
wavelength end of the spectrum are weighted heavier 
than those in the short wavelength end. Rearranging 
eq 56 we obtain 

[(/)](X2 - X0
2) = O0Xo2 + 6, ^(x^y (60) 

A plot of [<£](X2 - X0
2) against 1/(X2 - X0

2) obtained by 
adjusting the value of X0 such that the plot is linear is 
called a Moffitt-Yang plot. The intercept and the 
slope give respectively O0 and b0. An example is pro­
vided by poly(7-benzyl glutamate) dissolved in ethyl­
ene dichloride: X0 = 212 m/*, a0 = 205°, and 
b0 = -635° . It is noted that the Moffitt-Yang 
plot makes use of the off-absorption rotatory data. 

The parameter 60 is common known as Moffitt's 
constant. Its sign was thought to determine the helical 
sense of twist. A negative sign of b0 is interpreted to 
indicate that the helix under study is right handed while 
a positive sign indicates that the helix is left handed. 
The magnitude of b0 has been used as a measure of the 
helical content: 100% helix for a value of bo around 
— 635° and a random coil for a zero value of b0-

Moffitt was able to justify the anomalous dispersion 
of helical molecules by considering the helix as a molec­
ular crystal.2,3 It was shown that the molecular ro­
tation is determined by 

[<*>] = E -
CiV1 

+ : live v 

i Vi' (vt* - , 2 ) 2 
(61) 

After changing the variable from frequency to wave­
length (vt = c/Xj, v = c/X) eq 6 can be cast into the 
form ready for comparison with eq 55. 

w = ? x 2 - x , 2 + mr (62) 

It follows from a comparison of eq 55 and 61 that 

at = Ct + df (63) 

bt = dt 

Before examining the quantum mechanical nature of 
a0 and b0 (or equivalently at and b{ or ct and dt) it will 
be shown below that b( and hence bo can be obtained 
from circular dichroism like the rotatory strength. 
This will be done by casting one of the Kramers-
Kronig relations into the form of eq 56. 

The Kramers-Kronig relations35 are 

2a>2 r 
*(«) = — 

T JO 

8(Q) 

Q(Q2 - co2) 
dO (64) 

(34) W. Moffitt and J. T. Yang, Proc. Natl. Acad. Sd. U. S., 42, 
596 (1956). 

(35) C. A. Emeis, L. J. Oosterhoff, and G. de Vries, Proc. Roy. Soc. 
(London), A297, 54 (1967). 
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2co C° 
0(c) = - -

T JO 

* ( B ) 

o2 .dQ 

where 

0(w) = w~(n\ - Ur) 

(65) 

(66) 

is the rotation of the plane of polarization in radians 
per unit length and 

0(a,) = 1A(^i - fcr) (67) 

is the ellipticity. The dash above the integral sign in 
eq 64 and 65 means that only the principal value of 
the integral is to be taken. The complete CD spec­
trum, 0(co), determines the complete ORD spectrum, 
<j>(o>), and vice versa. 

Introducing the assumption of partial quantities so 
that the rotation and the ellipticity of each absorption 
region can be separated, i.e. 

<t>(a) = 12<t>t(u) 
i 

«(«) = 2>(«) 

we obtain 

<t>t(u) 
_ 2co_2 C 

TT J Di 

M 
o(o2 - w2) 

dQ 

(68) 

(69) 

(70) 

where #4(«) and O1[Oi) are the ith. rotation and the ith 
ellipticity; Z)4 means only the tth ellipticity d{ is taken 
into account. Equation 70 is a Kramers-Kronig rela­
tion between a partial rotation and its corresponding 
partial ellipticity. Introducing the ith absorption 
maximum co4, we find 

0((w) !̂ f 
•K J 

t(Q) 

0 ( 0 2 - W4
2 + co4

2 
CO2) 

dO = 

T/ 
J4(Q) 
/ CO4

2 - Q2X 
(71) 

In regions well-removed from the ith. absorption 
region, |co(

2 — 02| < < |w4
2 — w2| because for Q very dif­

ferent from co4, 0(0) is small and negligible. Equation 
71 can therefore be approximated by 

<£4(co) = 
TT(CO4

2 / 
em do + 

2co2 C 

Tr(W4
2 - co2)2J 

04 (O)(CO4
2 - O2) 

0 
dO (72) 

Equation 72 has the same frequency dependence as 
eq 61. By comparing the first term of the two equa­
tions it follows that 

P - 3hc f 
Ki ~ 4TrW 1 J 

eM dv (73) 

where JVi is the number of molecules per cubic centi­
meter. This simply reproduces the equation used by 
Moffitt and Moscowitz in obtaining the rotatory 
strength from circular dichroism. By comparing the 
second term of the two equations and using eq 63, it 
follows that 

at = — j - ^ 7 I ; (74) 
a 4TTiVi./ v 

b< = 
Fy 3hc 

' a 4TT2JV: J 
«'0(£-i). 

(75) 

where 

F.= 
48JVe2 

h2c2 

JV is Avogadro's number, and a = e^/hc = 1/137 is 
the hyperfine structure constant. 

The value of 64 calculated from circular dichroism by 
means of eq 75 should be used to obtain Moffitt's con­
stant, 60, from eq 58 and 59. This should be compared 
with the value obtained from the slope of the Mofiitt-
Yang plot and also with the value calculated theoreti­
cally using the equation to be developed later. 

It is interesting to note that not only can the Moffitt-
Moscowitz equation (73) be obtained from the 
Kramers-Kronig relations but also Moffitt's constant 
bo. We also note that the following equation 

, = mec C 
U TrJVe2J 

*«(/) dv' (76) 

suggested by Mulliken26 for calculating the oscillator 
strength from the experimental absorption curve can 
be obtained from another pair of Kramers-Kronig rela­
tions relating the ordinary dispersion to the absorp­
tion35 

n(«) 1 
k(Q) _ 2 p k(Q 

~ TTJo O2 -
dO (77) 

In the exciton model for the helix, Moffitt assumed 
that a helix is composed of JV identical interacting res­
idues. There are three mechanisms which lead to 
rotation. The first is the one-electron effect which is 
due to the electrostatic perturbation of the side-chain 
groups on the chromophores. This effect is usually con­
sidered to be small. The second and the third are the 
coupled oscillator effect. Moffitt's theory is just the 
degenerate coupled oscillator theory of Kirkwood. 
Rotation is due to the intraband interaction in which 
two different residues are simultaneously excited to the 
same excited state and the electrical transition of one of 
the residues appears as a magnetic transition to the other 
and vice versa. Rotation is also due to the interband 
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interaction in which two different residues are simul­
taneously excited to two different excited states. 

The success of the exciton model lies in its correct 
prediction of the on-absorption property, specifically, 
the exciton splitting. According to the exciton model, 
the excited states of the helix form energy bands. The 
rotatory strength for the K sublevel of the <r-exciton 
band is due to the intraband interaction 

R.k = J e,EE<V*<V? i r (q.t X q.t) (78) 
4 i j 

On summing over all the substates of the exciton band, 
the rotatory strength of the total band is zero. 

B, = S B , * = 0 (79) 
k 

Moffitt's constant for the cr-exciton band in the 
exciton model is 

h, = d-E^o-fcC^U — «»)/e, = 
aN k 

- - ^ S E J V r 4 , • QH X U) (80) 

Two remarks are in order here. First, Mofntt's con­
stant transforms like a pseudo-scalar changing sign for 
the mirror-image system. Second, this constant is also 
derived from the intraband interaction like the exciton 
splitting 

In summary the exciton model correctly predicts 
the exciton splitting for the on-absorption rotation. 
This is equivalent to a nonzero Mofntt's constant b0 

which can be obtained from: (1) the slope of the 
Moffitt-Yang plot, (2) eq 80 calculated theoretically, 
and (3) experimental circular dichroism using eq 75, 58, 
and 59. 

VIII . T H E INTERACTIONS RESPONSIBLE FOR 

OPTICAL ROTATION 

A. In the absence of a precise wave function for a 
given molecule, calculations have taken two direc­
tions. In the static-field method one tacitly makes 
use of the valence-bond approximation by confining a 
given transition to a small group of atoms and com­
puting the effect of the average field of the other atoms. 

In the dynamic approach use is made of the change in 
polarization forces which takes place when one or both 
of the groups are undergoing oscillations. For ex­
ample, the lowest order approximation to the inter­
action between two hydrogen atoms at large distances is 
found by evaluating the integral JVAIS(1)^BIS(2)H#AIB-

(l)^Bis(2)dT1dr2. This expression has an exponential 
dependence and decreases rapidly with distance. In 
this instance the second-order effects outweigh the 
first-order ones at large distances. Here the major 

effect arises from the polarization of one atom in the 
field of the other. The lowest order effect possible is 
the dipole-dipole interaction, which averages to zero. 
The first nonvanishing terms have the familiar 1/i?6 

dependence which would correspond to quadrupole-
octupole interactions among others. 

The situation is changed when one or both of the 
groups are undergoing forced oscillations. The dipole-
dipole forces no longer average to zero, and the inter­
action between the two groups has a 1/RZ dependence. 
This is termed the coupled oscillator effect and increases 
with increasing phase difference between the two groups. 

To attain a feeling for the regions where coulombic 
and polarization forces are dominant, the forces between 
the two hydrogen atoms may be examined. At a dis­
tance of 1 A the dominant term, the exchange integral, 
cannot be computed by standard perturbation methods 
in which the zeroth-order wave function is the product 
of the individual hydrogen atomic functions. 

Such a perturbation attempt leads to the coulombic 
term of the binding energy, which is 10-15% of the total. 
At a distance of 3 A the exchange term has become com­
parable to the coulombic integral. The dispersion 
forces (—6/.R6 in atomic units for two hydrogen mole­
cules) are comparable if not greater. This may prop­
erly be termed a transition region where both coulombic 
and dispersion forces must be considered. At a distance 
of 4 A the coulombic forces have decreased to Vuth 
the dispersion forces. At further distances the cou­
lombic terms may safely be ignored in computing the 
total interaction energy between the two atoms. 

In the analysis of electromagnetic phenomena, one 
is not directly interested in the total energy of the 
system, an important point to remember. The effects in 
question are still governed by the same types of intra­
molecular forces—exchange, coulombic, and disper­
sion—but their relative magnitudes will not necessarily 
be the same as those of the total energy. We may 
nevertheless be initially guided by the above considera­
tions when investigating appropriate mechanisms for 
optical rotatory dispersion. 

B. I t is not surprising that these two mechanisms 
do not always give the same sign of rotation. This 
often places us in the unhappy predicament of requiring 
mildly precise calculations just to obtain a reliable 
method for sign predictions. 

The quandry takes on two separate aspects accord­
ing to the type of transition being studied. With the 
electric dipole transition the dispersion forces are of the 
dipole-dipole type. The optical rotatory parameter 
introduced an r into the numerator and the over-all 
intergroup distance dependence is 1/r2. In the case of 
magnetic dipole oscillations, the electric dipole moment 
is unchanged while the quadrupole moment changes. 
The lowest order intergroup forces are the quadrupole-
dipole with a 1/fl4 dependence. 
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For either transition the coulombic terms must be 
considered. In optical rotation language the electric 
dipole transition becomes active through interaction 
with other electric dipole transitions (dispersion forces 
in the presence of an electromagnetic field) as well as 
through the influence of the average (coulombic) dis­
symmetric field around the group. The situation with 
magnetic dipole transitions is similar except that 
the dispersion forces are of a lower order. 

It we first confine ourselves to transitions which 
interact with a dissymmetric array of neutral atoms 
(the crudest approximation to a molecular system), 
the average field from neighboring groups will have an 
exponential dependence. For example, the average 
potential due to a hydrogen atom is — e~2B(l + 1/.R) 
in atomic units. The effect of the dispersion forces in 
the presence of the radiation field introduces a l/R2 

term for electric dipole transitions and a 1/724 term for 
magnetic dipole transitions. It is certainly true that at 
large distances the dispersion terms will predominate 
owing to their less severe distance dependence. In 
most cases of interest the interacting groups will have 
no unpaired electrons. This allows the division of the 
interaction region into three parts. In the first region 
the exchange forces have become negligible, and the 
coulombic terms predominate over the dispersion forces. 
This region is probably quite narrow and the groups 
must be nearly touching, just beyond the point where 
the exchange integrals are appreciable. In the inter­
mediate region the two effects are comparable and not 
always of the same sign. Finally, as mentioned, there 
will be a region at large distances where the dispersion 
forces are the sole effect. 

C. It happens that the coulombic contribution to 
the optical rotatory parameter depends on both the 
exponential wave functions of the chromophore and 
the neighboring groups. The assessment of effective 
atomic numbers for molecular wave functions is no 
easy task. One must first recognize that only with the 
hydrogen atom is there a well-defined effective atomic 
number constant at all distances. For example, in the 
H2

+ ion the exact electronic solution leads to a com­
plicated function of the elliptical coordinate which re­
duces to e~r near either nuclei and e_2r at large distances 
from both nuclei, where the electron sees essentially the 
combined + 2 charge of the two protons. A variation 
calculation on the sum of the hydrogen-like functions 
gives a value of about 1.2 for the exponent. In the 
region of maximum charge density, important for the 
bulk of the binding energy, this value represents a fairly 
good coverage for the actual exponential-like function. 
This will, however, tend to overestimate the charge 
density in outlying regions, where the exponent must 
approach 2. 

This illustrates the well-known fact that a wave func­
tion which is adequate for calculating the total energy 

of a system may be totally inadequate in the regions of 
rarified electron atmosphere. The situation is similar 
in many electron systems. The helium atom must 
satisfy the equation 

- - ( V 1
2 + V2

2) - - - - + 
2 

n 
2 

»"12. 
4>(rhr2) = E\l/(rur2) 

in all regions of space. The zeroth-order estimate to 
this problem provides a lower bound to the charge den­
sity at large distances. Ignoring the repulsion term 
gives 

lM»Va) = 6"2^r2" 

E0 = - 2 X V»(4) au 

The first improvement to the wave function computes 
the average field of one electron 

- [1 - e-4r(l + 2r) ] 
r 

and adds it to the field of the doubly charged nucleus 
— 21 r. This provides an improved approximation to 
the field in which either electron moves in the presence 
of the other. Reiteration of this process leads to a 
series of complicated wave functions obtained by nu­
merical integration. The best exponential approxima­
tions to these self-consistent field functions approach 
the value e~1Jr. This may be taken as the point of 
departure in determining the functional behavior at 
large distances; the appropriate equation for one of the 
electron is 

-V2 - - - e-^1 

2 r 
7 > r C~ + L 7 ) . <f> = E<f> 

As r -*• 0 the potential approaches — 2/r, and as r -*• » 
it becomes — 1/r. 

It therefore seems reasonable that the best exponen­
tial estimate of this equation would be a function of the 
form e"Z(r)B ', where r varies continuously from 2 near 
the nucleus to 1 at large distances with an average 
value for energy purposes of 1.7. Such a solution 
would have a quite complex dependence on r in order to 
satisfy an eigenvalue problem with a constant E. 
If this requirement is relaxed, a solution which numer­
ically satisfies the equation in the spherical shell r0 ± 
dr is e~

Z(n)r, where Z(r0) = 1 + e"2 '1-"^! + 1.7r0). 
This is the self-consistant field potential written in the 
form —Z(r)/r where Z(r) is evaluated at r0. The 
energy in this spherical shell is given by 

E(T0) = -V2Z2(r0) 

If p(r0) is the electron density in the spherical shell, the 
total energy will be given by 

E = J E(ro)p(r0) dr0 
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We are not especially interested in the energy; how­
ever, this will be a good check on the consistency of our 
results. 

The next problem is to find p(r0). Normalization 
of the e~Z{n)r functions is out of the question, since 
they only numerically satisfy an eigenvalue equation 
in a limited region of space. One may divide the re­
gion into spherical shells as before with average radii 
of rn, n = 1,2, . . . . The electron may be considered 
to satisfy the equations 

2 r 
<t>n(r) = E(rn)4>n{r) 

n = 1, 2, . . . 

The fractional charge in each region is now obtained by 
the boundary conditions 

<t>n(rn,n+l) = 4>n+l(rn,n+l) 

-T~0Vn+l) = —; (Ai.n+l) 

Ar dr 
where r„,n+i is the radius of the boundary between 
regions n and n + 1. In order to satisfy both boundary 
conditions, it will be necessary to introduce the solu­
tions to the hydrogen problem which do not vanish at 
infinity for all regions except the outer one. 

This having been done for all the electrons of a many 
electron system, one is led to the expectation that at 
large distances the appropriate antisymmetrized func­
tion will have the standard form 

A|(ls)(l7)(2s)(&)(2P,)(2P~j... | 

where A is a constant obtained from the "normaliza­
tion" procedure above, and the deterimental function is 
identical in form with the one used in energy calcula­
tions except that all Z»a are equal to unity. It is worth 
noting that if the over-all atomic wave function is 
normalized in the standard way, the use of the actual 
atomic number or even the Slater average values of 
Zeff will underestimate the charge density, whereas the 
value of i will greatly overestimate it. 

If the interacting groups are sufficiently close that 
in the region of maximum overlap one or both of the 
effective atomic numbers has not reached its limiting 
value of 1, the above procedure must be modified. A 
working criterion might perhaps be to require the re­
gion of overlap to include no more than 1-2% of the 
total electron cloud of each group. For example, in 
hydrogen about 6% of the charge lies outside a sphere 
of radius3 (~1.5 A) and only 0.05% outside a radius of 6. 

D. The next approximation is to divide the mole­
cule into molecular groups. For example, the dissym­
metric interactions in 3-methylcyclopentanone may be 
approximated by suitably oriented ethane and acetone 
molecules. This leads to the investigation of the fields 

of simple molecules, a problem considerably more com­
plex than for isolated atoms. Some of the salient fea­
tures may be examined by considering two simple ex­
amples H2 and Li2+. 

Every neutral molecule, no matter now symmetrical, 
has a nonvanishing multipole moment of some order. 
Most nonpolar molecules have permanent quadrupole 
moments, which lead to potential energies varying as 
1/RS. This means that at large enough distances the 
exponential coulombic terms will be outweighed by the 
multipole terms. It will happen that, although the 
charge density of the H2 molecule at large distances may 
be less than the combined density of two hydrogen 
atoms, the field will be greater because of the anisot-
ropy. This does not mean that the coulombic terms 
may be ignored at all distances. The distances where 
they are comparable are the same order of magnitude 
as the intramolecular distances of importance in optical 
rotation phenomena. 

At small distances the multipole expansion breaks 
down and the force field must be obtained by integra­
tion over the charge density of the entire molecule. 

If the valence-bond approximation for the hydrogen 
molecule is used, the field is 

fflMVMV + ^A(2)^B(1)]2 X 
2(1 + S2) 

_±_J. + l + i-
L J1AP r B P /"1P r 2 P . 

drid Tl 

where ?*AP, ?"BP, FIP, r2p are the distances of the charges 
to the field point P. This may be rewritten 

1 + S2 F H ( A ) + F H ( B ) ] -

VA 

§1 
TB 

' * A ( 1 ) * B ( D - - - + 2 g f v * v " , r ° v " / d T i 
J r1P 

where VH(A) is the coulombic field of a hydrogen atom. 
The last term is a three-center integral, which may be 
approximated by expanding 1/VIP about the midpoint of 
the bond. This choice of origin for the expansion makes 
the least possible error in retaining only the first term. 
The second part of the expression reduces to 

_ S 2 _ S2 2S_2 

which constitutes a quadrupole of moment 1A-RH2
2^2-

The first terms would constitute the static field of the 
unperturbed hydrogen atoms reduced by a factor of 
1/(1 + »S2) were it not for the fact that the effective 
atomic number in this two-center problem enters in a 
different way from the isolated atoms. A hydrogen 
molecule will have an incomplete screening effect at 
large distances intermediate between the isolated atoms 
and a helium atom. All three will reduce to an e"r 
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dependence at large distances, but the normalization 
constant will vary, being lowest for the helium atom. 

The calculation of many electron wave functions 
from first principles is a full-time job. For the time 
being one must rely upon the best variation func­
tions available and use them as average values in the 
above-described renormalization method. These en­
ergy-oriented functions are often adequate for ob­
taining dipole and quadrupole moments. Ideally one 
would wish to use the experimental values; however, 
only the total dipole moment of a molecule is measure-
able. The individual bond moments must often be 
estimated with the aid of energy-oriented variation func­
tions. Since dipole and quadrupole moments are 
properties dependent on the relative distribution of the 
total charge, unlike the coulombic incomplete screening 
terms, there is more hope that the variation functions 
may provide reasonable estimates to these quantities. 

In LiH there is a nonvanishing dipole moment aris­
ing from the combined effects of radius and electro­
negativity differences. It does not follow that the 
negative end of the dipole is always toward the most 
electronegative atom. Once the best possible variation 
function has been obtained consistent with observed 
dipole moments, it may be used to estimate the modi­
fications to the coulombic incomplete screening terms 
upon forming the molecule from the atoms. For this 
purpose it may be assumed that the inner-shell elec­
trons make a negligible contribution to the electron 
density at large distances. In a molecule like LiH the 
first estimate may be obtained from the valence-bond 
function 

*H(1)*LI(2) + * H ( 2 ) , M 1 ) + W H ( D * H ( 2 ) 

which has been adjusted to give the observed dipole 
moment without doing violence to the total energy. 

A comparison of the Slater effective atomic numbers 
of individual atoms with those obtained in variation 
calculations shows that the two are often comparable, 
and individual atomic screening is a reasonable start­
ing point in assessing the roles of the various mech­
anisms in optical rotation. In order for this to hold 
true, the molecular fragments must possess no net 
charge. I t will also very likely occur that the incom­
plete screening terms from very polar bonds such as 
C-F will require significant modifications from iso­
lated atomic values. 

In summary two interacting groups may contribute 
to the rotatory parameter through the following mech­
anisms. 

(1) The perturbation of a transition by the average 
field of the other groups. This field breaks down into 
the categories: (a) coulombic or incomplete screening 
with an Ae~R dependence; (b) dipole with a 1//25 

dependence;36 (c) quadrupole with a 1/726 dependence.86 

(36) I.e., the rotatory parameter varies in the manner indicated. 

(2) The enhancement of the dispersion forces 
through oscillations leads to (a) a 1/R2 dependence for 
electric dipole transitions; (b) 1/R4 dependence for 
magnetic dipole transitions. 

(3) Charge-transfer effects, which occur when the 
exchange integrals between the groups become appreci­
able. 

(4) Conjugation effects, which require the con­
solidation of the two groups into a single extended 
chromophore. 

E. It must be emphasized that the problem is only 
half-solved when the force field in which a chromophore 
is situated becomes known. There remains the often 
delicate quantum mechanical question of the electronic 
paths of least resistance. When a group interacts with 
a radiation field, oscillation occurs which may be de­
scribed as lying along the path of least resistance. If 
this path has a center or plane of symmetry, the induced 
radiation has equal indices of refraction for right- and 
left-handed circularly polarized light. When the path 
lacks these elements of symmetry, the plane of polariza­
tion may be rotated. The actual path of least resist­
ance is envisioned in classical parlance as a right- or 
left-handed helical conductor. (It can be shown that a 
randomly oriented array of left-handed helices is levo-
rotatory.) The number of turns per unit length is 
small for electric dipole transitions and large for mag­
netic dipole transitions. A good estimate of the shape 
of the path is necessary in order to make even rudi­
mentary calculations. This is where the excited states 
come in, since the lowest ones determine the path the 
electron will take under the influence of a perturbation. 

Probable patterns of behavior may be inferred from 
symmetry arguments; however, it is doubtless possible 
to construct two atomic systems (not necessarily stable) 
with identical symmetries but different signs of rota­
tion for certain identical dissymmetric environments. 
For relatively simple systems such as the carbonyl group 
there are only a few choices which reasonably conform 
to the known characteristics of the molecule. When 
one deals with a complex system such as the v electrons 
in benzene, there are many reasonable choices for the 
general shapes of states of a given symmetry. These 
states, which are to be mixed with the low-lying states 
involved in the transitions under investigation, often 
themselves have been little investigated experimentally 
or theoretically. 

As a general rule of thumb, it has often been sup­
posed that states which mix with the ground state only 
play a secondary role in comparison with those which 
mix with the excited. The success of this assumption 
depends not so much on the energy differences directly 
but on the diffuseness of the electron clouds. In 
general for two given states of an atom the one of higher 
energy will be more diffuse and will interact more 
strongly with its environment. If the perturbed ground 
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state preferentially directs charge toward the nearest 
interacting groups it may happen that this term will pre­
dominate. I t will not always be a hard and fast rule 
that the perturbation of the ground state can be ne­
glected. 

An examination of a moderately complex chromo-
phore, particularly one of high symmetry, leads to the 
conclusion that inventing the states needed in optical 
rotation calculations is at best a marginal proposition. 
For example, in the benzene chromophore the allowed 
Ein transition has components of electric moment 
along the X and Y directions in the plane of the mole­
cule. Perturbation theory requires a state of Ei8 sym­
metry for optical activity. Both the valence-bond 
and molecular-orbital theories give only Alg, A2g, 
E2g, Biu, B2U, and E j u states for the x-electron system. 
In molecular-orbital language, the transition takes place 
from an orbital of Eig symmetry to one of E2u symmetry. 
The proper linear combination of determinants sepa­
rates the Ei„ state from the B i u and B2u states. The 
functions in question have the form 

|A2u(l)A^(2)Elg(3)ETg(4)Elg'(5)E^(6)| 

The necessary EJg states must have the form 

|A2u(l)A^(2)Elg(3)ETg"(4)Elg'(5)Alg"(6)| 

where Ai8 is any vacant orbital of this symmetry. The 
ends of optical rotation are best served by those states 
which allow the introduction of the maximum amount 
of dissymmetry with the least expenditure of energy. 
In addition, those states which allow the most charge 
density near the neighboring groups and have the lowest 
number of nodes in this vicinity will be highly favorable. 
Of these requirements the energy requirement is the 
least stringent, since there is merely an inverse power 
dependence; however, higher energy states tend to 
have more nodes, which cause more cancellations in the 
integrals. I t is for this reason that integrals of per­
turbation functions between states with widely differ­
ing quantum numbers tend to zero. I t may happen 
that no one state fully satisfies those requirements. 

The most reliable orbital of Aig symmetry is the ap­
propriate a* between carbon and hydrogen. There 
are no carbon-carbon <r* orbitals of this symmetry. 
This orbital has two nodes and thereby bears a resem­
blance to a 3s orbital at the center of the ring. The 
transition in question would be described as ir-<r*. 
The optical rotatory parameter is determined by matrix 
elements of the form (£,

2u|T|o-*Alg) (see Figure 12). 
The ex* orbital concentrates charge in the plane of the 
ring and the outermost node leads to a tendency toward 
cancellation in the matrix element. I t would also be 
desirable to have an orbital which concentrates charge 
above and below the ring. Here we are pretty much on 
our own, and the state function we construct will more 
than likely be one of a set of functions which are properly 

Figure 12.—The Ai8 a* orbital of benzene. 

Figure 13.—The AiE 3d„«_«* function of benzene. 

mixed by configuration interaction and not a true state 
by itself. The 2s and 2p orbitals having been used, 
the 3s, 3p, and 3d orbitals must next be investigated. 
The 3s and 3p give nothing in addition to the 2s and 
2p besides more nodes, higher energies, and hence a re­
duced contribution to the rotation. There are several 
possible combinations and orientations of 3d functions 
only two of which are linearly independent: 3d„i_j(i, 
Zd1I-Xi, 3dS!_j,!, 3d3js_ri, the first of which is shown in 
Figure 13. Even though it would be quite difficult to 
construct an approximate state function comprised of 
these orbitals, one may still assert that, so far as their 
role in perturbations is concerned, the information on 
these excited states need not be so precise as for the 
ground and original excited state. 

If in the hydrogen-atom problem one were given a 
complete set of functions identical with the actual solu­
tions except for the exponents, any one of them would in 
general be inadequate by itself unless the exponent 
happened to coincide with that of a true state. A varia­
tion treatment on the complete set would, of course, 
set matters aright and introduce the correct combina­
tions. If the original choice had been particularly poor, 
the convergence would be quite slow, and results of field 
calculations for various states based on one or two ap­
proximate functions would be quite misleading. 

If one or two of the lowest states were assumed to be 
reasonably well known, a set of functions could be 
formed in a systematic way (e.g., the Schmidt ortho* 
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normalization procedure) which are orthogonal to each 
other and to the "known" functions. In the hydrogen 
example this would lead by a step-wise process to the 
true functions merely through the requirement that they 
all be orthogonal to the Is ground state and to each 
other. If the average exponent for the Ei12 state of 
benzene is known, that for nearest lying excited states 
may possibly be estimated by this method. 

A variation calculation on locally complete (i.e., 
sets of functions which span various representations 
of the symmetry group) sets of functions will lead to a 
new set of functions 

i - l 

j = 1, . . . , N, where 
N 

2_,Cj C j ' == On' 
3 = 1 

Even though these new functions will have different 
energies, there will still be a tendency toward cancel­
lation of cross terms in matrix elements 

/JOED = <0|ft|tf'>-CE'|ilf|0> = 

E < 0 T O - P I V|*o><fc|Af|0>]/- *E, 
3 

where E' is the actual excited state and E is the sym­
metric state of the chromophore. If an average 
denominator is used, the expression in brackets becomes 

E E E C^C^WI^X^IMIO) = 
j — I i = I i ' = 1 

i = i 

Such a method might be expected to give reasonably 
good results for any terms but coulombic incomplete 
screening integrals. 

F. In view of the great problems in choice of basis 
functions and rapidity of convergence, an alternative 
approach which makes maximum use of the known 
features of the system may be in order. Consider the 
two terms for the optical rotatory parameter of an elec­
tric dipole transition from state 0 to state 1 arising from 
the perturbation of the ground and excited state 

{i^O -&0 — J^i 

j V i HJI — Hi j I i l o - i l l I. 

i = 2L &Q — JOJi -Ga — EJi Jl 

Since the terms (i \V\ 0) -*• 0 with increasing i be­
cause of differences in nodes, it should happen that only 
a handful of true states of the system differing by only 
a few quantum numbers will make a significant contribu­
tion to 001, This being true any tendency toward can­
cellation will not be unduly stressed by assuming all the 
denominators to be equal. We can perhaps expect to 
be little worse off than being forced to construct an 
incomplete number of excited states whose energies we 
have no other choice but to set equal. 

Substraction of the i = 0 and 1 terms and 
setting all the denominators equal allows summation 
over all states and the use of the matrix multiplication 
rule. The final result is 

/Joi = <0|fl|i>.<l|7|0>{=-^r K i M D -
\£/f) — Mil 

<0|M|0>] + ^ ( 1 | M | 1 > + ^1(OIMIO)J + 

<0|J2|l>.|-^-<l|2lfy|0> - ^<1|VM|0>} 

where AE0 and AEi are positive, and the imaginary part 
of the expression is to be taken. 

In general MW ^ VM and both matrix elements must 
be evaluated separately. For the magnetic dipole 
transition the corresponding terms are {0 |i2F| 1) = 
(0 \VB\ 1). For example, in the carbonyl chromophore 
0o = xe~ar, fa = ye~a'r, and R = kz. One is led to the 
integral 

efxyzVe-°re-a'rdT 

which is identical in form with the original method with­
out employing the intermediate state. Whatever the 
shortcomings this calculation places primary emphasis 
on the detailed properties of the ground and excited 
states without unduly emphasizing those of an in­
complete set of intermediate states. 

In view of the great complexity of the optical rotation 
problem, it is not surprising to find that no one method 
is particularly satisfactory. One must use the alter­
native approaches for calculating the same effect as a 
check on each other. Finally, the use of one- to four-
electron model systems of high tractability should 
provide a feeling for the direction to be taken with ac­
tual molecules. 
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